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Abstract: The flood of data generated from many sources 
daily. Maintenance of such a data is challenging task. The 
solution is Hadoop. Hadoop is a framework written in Java for 
running applications on large clusters of commodity 
hardware. The Hadoop Distributed File System (HDFS) is 
designed to be scalable,fault-toleran,distributed storage 
system that works closely with MapReduce.In a large cluster, 
thousands of servers both host directly attached storage and 
execute user application tasks. By distributing storage and 
computation across many servers, the resource can grow with 
demand while remaining economical at every size. Using 
Hadoop’s HDFS and MapReduce programming model we can 
distribute,process and count the number of occurrence of each 
word in large file set. 
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I. INTRODUCTION 
Hadoop is a framework written in Java for running 

applications on large clusters of commodity hardware and 
incorporates features similar to those of the Google File 
System (GFS) and of the MapReduce computing paradigm. 
Hadoop’s HDFS is a highly fault-tolerant distributed file 
system and, like Hadoop in general, designed to be 
deployed on low-cost hardware. It provides high throughput 
access to application data and is suitable for applications 
that have large data sets. Even if hundreds or thousands of 
CPU cores are placed on a single machine, it would not be 
possible to deliver input data to these cores fast enough for 
processing. Individual hard drives can only sustain read 
speeds between 60-100 MB/second. These speeds have 
been increasing over time, but not at the same breakneck 
pace as processors. Optimistically assuming the upper limit 
of 100 MB/second, and assuming four independent I/O 
channels are available to the machine, that provides 400 
MB of data every second. A 4 terabyte data set would thus 
take over 10,000 seconds to read--about three hours just to 
load the data! With 100 separate machines each with two 
I/O channels on the job, this drops to three minutes. 

Hadoop processes large amount of data by 
connecting many commodity computers together and 
making them work in parallel. A theoretical 100-CPU 
machine would cost a very large amount of money. It 
would in fact be costlier than 100 single-CPU machines. 
Hadoop basically ties together smaller and more reasonably 
priced computers to form a single cost-effective compute 
cluster. Computation on a large amount of data has been 
done before in a distributed setting. The simplified 
programming model is the reason that makes Hadoop 
unique. In a Hadoop cluster when the data is loaded it is 

distributed to all the machines of the cluster as shown in Fig 
1. 
 

Fig 1 :Data is distributed across nodes at load time 
 

Hadoop DistributedFile System (HDFS) splits the 
large data files into parts which are managed by different 
machines in the cluster. Each part is replicated across many 
machines in a cluster, so that if there is a single machine 
failure it does not result in data being unavailable. In the 
Hadoop programming framework data is record oriented. 
Specific to the application logic, individual input data files 
are broken into various formats. Subsets of these records 
are then processed by each process running on a machine in 
the cluster. Using the knowledge from the DFS these 
processes are scheduled by the Hadoop framework based on 
the location of the record or data. The files are spread 
across the DFS as chunks and are computed by the process 
running on the node. Hadoop framework helps in 
preventing unwanted network transfers and strain on 
network can be obtained by reading data from the local disk 
directly into the CPU. Thus with hadoop one could have 
high performance results due to data locality, with their 
strategy of moving the computation to the data. 

 
II. ARCHITECTURE 

A HDFS is filesystem component of Hadoop.HDFS has 
master/slave architechture.An HDFS cluster consists of 
single namenode, a master server and many datanodes 
,called slaves in the architecture.The HDFS stores 
filesystem metadata and application data separetly.HDFS 
stores metadata on separate dedicated server called 
Namenode and Application data are stored on separate 
servers called Datanodes. All servers fully connected and 
communicated with the TCP based protocols.The below fig 
2 shows the complete architechture of the HDFS[1]. 
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Fig 2:Architecture of HDFS 

 
 
 
 
 

A. Namenode 
Namenode holds all the filesystem metadata for 

the cluster and oversees the health of datanode and 
coordinates access to data.Namenode is the central 
controller of the HDFS.It does not hold any cluster data 
itself.The namenode only knows what blocks make up a file 
and where those blocks are located in the file.The 
namenode points clients to the datanodes they needs to talk 
to and keeps track of the cluster’s storage capacity,health of 
each datanode ,and making sure each block of data is 
meeting the minimum defiend replica policy. 

The namenode maintains file system namespace 
.Any change to the filesystem namespace or its properties 
recorded by the namenode.An application can specify the 
number of replicas of a file that should be maintained by 
HDFS.Number of copies of the file is called replication 
factor o that file.This information is stored by the 
namenode. 

The namenode is critical component of the 
HDFS.without it,clients would not be able to read or write 
files from HDFS,and it would be impossible to schedule 
and execute MapReduce jobs.Beacuse of this,its good idea 
to  

equip the namenode with a highly redundant enterprise 
class server configuration;dual server supplies,hot 
swappable fans,redundant NIC connections etc.. 
 

B. Datanode 
HDFS stores application data in datanode.During 

startup each datanode connects to the namenode and 
performs handshake.The purpose of handshake is to verify 
the namespace id and software version of the datanodes.If 
either doesnot match that of the namenode and datanode 
automatically shuts down.  

HDFS uses heartbeat messages to detect 
connectivity between namenode  and datanodes.Datanode 
send heartbeat to the namenode for every three seconds via 
TCP handshake,using same port number defiend for the 
namenode daemon,usually TCP 9000.Every tenth heartbeat 
is the Block report,where the datanode tells the namenode 
about all the data blocks it has.the block reports allow the 
Namenode to build its metadata and ensure (3)copies of the 
blocks exist in different nodes in different racks. 

 
C. Secondary Namenode 

  Hadoop has server role called the Secondary Name 
Node. A common misconception is that this role provides a 
high availability backup for the Name Node. This is not the 
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case.The Secondary Name Node occasionally connects to 
the Name Node (by default, ever hour) and grabs a copy of 
the Name Node's in-memory metadata and files used to 
store metadata (both of which may be out of sync). The 
Secondary Name Node combines this information in a fresh 
set of files and delivers them back to the Name Node, while 
keeping a copy for itself. 

Should the Name Node die, the files retained by 
the Secondary Name Node can be used to recover the Name 
Node. In a busy cluster, the administrator may configure the 
Secondary Name Node to provide this housekeeping 
service much more frequently than the default setting of 
one hour. Maybe every minute 

. 
D. HDFS client 

User application access the flie system using 
HDFS client.Like other file systems,HDFS supports 
operations to read,write and delete files.When an 
application reads a file,HDFS client first asks the namenode 
about list of datanodes that host replicas of  the blocks of 
the file.It then contacts datanodes directly and requests the 
transfer of the desired block.when client writes,it first asks 
the namenode to choose datanode to host replicas of the 
first block of the file.The client organizes the pipeline from 
node-to-node and sends data. 

 

E. Data replication 

HDFS replicates file blocks for fault tolerance. An 
application can specify the number of  replicas of  a file at 
the time it is created, and this number can be changed any 
time after that. The name node makes all decisions 
concerning block replication. HDFS uses an intelligent 
replica placement model for reliability and performance. 
Optimizing replica placement makes HDFS unique from 
most other distributed file systems, and is facilitated by a 
rack-aware replica placement policy that uses network 
bandwidth efficiently. 

Large HDFS environments typically operate 
across multiple installations of computers. Communication 
between two datanodes in different installations is typically 
slower than data nodes within the same installation. 
Therefore, the name node attempts to optimize 
communications between data nodes. The name node 
identifies the location of data nodes by their rack IDs. 

F. Rack awareness 
HDFS provides rack awareness.Typically,large clusters are 
arrange across multiple installations(racks).Network traffic 
between different nodes within the same installation is more 
efficient than network traffic across installations.A 
namenode tries to place replicas of a block on multiple 
installations for improved fault tolerance.However,HDFS 
allows administrators to decide on which installation a node 
belongs.Therefore ,each node knows its rack ID,making it 
rack aware. 
 
 
 
 

III. FILE READ AND WRITE OPERATION ON HDFS 

 
A. Write operation: 

Figure 3:writing data to HDFS  

 
Here we are considering the case that we are going to create 
a new file, write data to it and will close the file.Now in 
writing a data to HDFS there are seven steps involved. 
These seven steps are[2]: 

Step 1: The client creates the file by create() method on  
DistributedFileSystem. 

Step 2:   DistributedFileSystem makes an RPC call to the 
namenode to create a new file in the filesystem’s 
namespace, with no blocks associated with it.The 
namenode performs various checks to make sure the file 
doesn't already exist and that the client has the right 
permissions to create the file. If these checks pass, the 
namenode makes a record of the new file; otherwise, file 
creation fails and the client is thrown an  IOException. The 
Distributed FileSystem returns 
an FSDataOutputStream for the client to start writing data 
to. Just as in the read case, FSDataOutputStream wraps a 
DFSOutput Stream, which handles communication with 
the datanodes and namenode. 

Step 3: As the client writes data,  DFSOutput 
Stream splits it into packets, which it writes to an internal 
queue, called the  data queue. The data queue is consumed 
by the  DataStreamer,  which  is  responsible  for  asking 
 the  namenode  to  allocate  new  blocks  by picking a list 
of suitable datanodes to store the replicas. The list of 
datanodes forms a pipeline, and here we’ll assume the 
replication level is three, so there are three nodes in the 
pipeline. TheDataStreamer streams the packets to the first 
datanode in the pipeline, which stores the packet and 
forwards it to the second datanode in the pipeline. 

Step 4: Similarly, the second datanode stores the packet 
and forwards it to the third (and last) datanode in the 
pipeline. 
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Step 5: DFSOutputStream also maintains an internal 
queue of packets that are waiting to be acknowledged by 
datanodes, called the ack queue. A packet is removed from 
the ack queue only when it has been acknowledged by all 
the datanodes in the pipeline. 

Step 6: When the client has finished writing data, it 
calls close() on the stream. Step 7: This action flushes all 
the remaining packets to the datanode pipeline and waits for 
acknowledgments before contacting the namenode to signal 
that the file is complete The  namenode  already  knows 
 which blocks  the  file  is  made  up  of  (via 
 DataStreamer asking for block allocations), so it only has 
to wait for blocks to be minimally replicated before 
returning successfully. 

B. Read Operation: 

Fig 4:reading the file from HDFS 

Fig 4 shows six steps involved in reading the file from 
HDFS[2]:Let's suppose a  Client (a HDFS Client) wants to 
read a file from HDFS. So the steps involved in reading the 
file is: 

Step 1: First the Client will open the file by giving a call to 
open() method onFileSystem object, which for HDFS is an 
instance of DistributedFileSystemclass. 

Step 2: DistributedFileSystem calls the Namenode, using 
RPC, to determine thelocations of the blocks for the first 
few blocks of the file. For each block, thenamenode 
returns the addresses of all the datanodes that have a copy 
of that block. 

The DistributedFileSystem returns an object 
of FSDataInputStream(an input stream that supports file 
seeks) to the client for it to read data 
from.FSDataInputStream in turn wraps 
a DFSInputStream, which manages the datanode and 
namenode I/O. 

Step 3: The client then calls read() on the 
stream. DFSInputStream, which has stored the datanode 

addresses for the first few blocks in the file, then connects 
to the first closest datanode for the first block in the file. 

Step 4: Data is streamed from the datanode back to the 
client, which calls read()repeatedly on the stream. 

Step 5: When the end of the block is 
reached, DFSInputStream will close the connection to the 
datanode, then find the best datanode for the next block. 
This happens transparently to the client, which from its 
point of view is just reading a continuous stream. 

Step 6: Blocks are read in order, with 
the DFSInputStream opening new connections to 
datanodes as the client reads through the stream. It will also 
call the namenode to retrieve the datanode locations for the 
next batch of blocks as needed. When the client has 
finished reading, it calls close() on the FSDataInputStream. 

IV. PROCESSING OF DATA DISTRIBUTED ON HDFS 
 
We process data on HDFS parallely using MapReduce 
programming model.This model is an associated 
implementation for processing and generating large data 
sets.user specify a map fuction that process a key/value pair 
to generate a set of intermediate key/value pair,and a reduce 
function that merges all intermediate values associated with 
the same intermediate key.The below figure shows a data 
flow using MapRedce. 

 
 

Fig 5: Data Flow in MapReduce 
 

Below steps explains data flow in above fig 5: 
Step 1: The system takes input from file system and 

spilts it up across separate map nodes. 
Step 2: The map function or code is run and generates 

an output for each map node. 
Step 3: This output represents a set of intermediate 

key/value pairs that are moved to reduces 
nodes as input. 

Step 4: The reduce function or code is run and 
generates an output for each reduce node. 

Step 5: The system takes a outputs from each node to 
aggregate a final view. 
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A. WordCount example: 
 

 
Fig 6:wordcount example 

 
Each Input box on the left-hand side of fig 6 is a 

separate document. Here are four documents, the third of 
which is empty and the others contain just a few words, to 
keep things simple.  

By default, a separate Mapper process is invoked 
to process each document. In real scenarios, large 
documents might be split and each split would be sent to a 
separate Mapper. Also, there are techniques for combining 
many small documents into a single split for a Mapper. The 
fundamental data structure for input and output in 
MapReduce is the key-value pair. After each Mapper is 
started, it is called repeatedly for each line of text from the 
document. For each call, the key passed to the mapper is the 
character offset into the document at the start of the line. 
The corresponding value is the text of the line. 

In Word Count, the character offset (key) is 
discarded. The value, the line of text, is tokenized into 
words, using one of several possible techniques. Finally, for 
each word in the line, the mapper outputs a key-value pair, 
with the word as the key and the number 1 as the value (i.e., 
the count of “one occurrence”). Note that the output types 
of the keys and values are different from the input types. 
Part of Hadoop’s magic is the Sort and Shuffle phase that 
comes next. Hadoop sorts the keyvalue pairs by key and it 
“shuffles” all pairs with the same key to the same Reducer. 
There are several possible techniques that can be used to 
decide which reducer gets which range of keys. 

The inputs to each Reducer are again key-value 
pairs, but this time, each key will be one of the words found 
by the mappers and the value will be a collection of all the 
counts emitted by all the mappers for that word. Note that 
the type of the key and the type of the value collection 
elements are the same as the types used in the Mapper’s 
output. That is, the key type is a character string and the 
value collection element type is an integer. To finish the al l 
key-value pair consisting of each word and the count for 
that word.gorithm, all the reducer has to do is add up all the 
counts in the value collection and write a fina 

Algorithm 
1: class Mapper  
2: method Map(docid a; doc d)  
3: for all term t ε doc d do  
4: Emit(term t; count 1)  
 
1: class Reducer  
2: method Reduce(term t; counts [c1; c2; : : :])  
3: sum=0  
4: for all count c ε counts [c1; c2; : : :] do  
5: sum=sum + c  
6: Emit(term t; count sum) 
 
C.Table 1 shows the Map Reduce program running. 
 
10/04/13 17:43:02 INFO mapred.JobClient: map 0% 
reduce 0%  
10/04/13 17:43:14 INFO mapred.JobClient: map 66% 
reduce 0%  
10/04/13 17:43:17 INFO mapred.JobClient: map 100% 
reduce 0%  
10/04/13 17:43:26 INFO mapred.JobClient: map 100% 
reduce 100% 
 

Table 1:Map Reduce program running 
 

V. RESULTS 
A.The Fig 7 shows the Hadoop Administration interface 
,this gives the entire cluster information. 

 
Figure 7: Hadoop Administration Interface 

 
B.The Fig 8 shows the Name Node interface,this gives the 
total capacity, remaining and used capacity of the Name 
Node. 

 
Fig 8: Name Node Interface. 

 
C.The Fig 9 shows the HDFS interface, this gives the 
information about current data on HDFS. 
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Fig 9: File System Interface 

 
D.The Fig 10 shows the user accounts on Hadoop along 
with their permissions 

 
Fig 10: users on HDFS 

 
 
E.The Fig 11 shows the Data Chunks distributed over the 
HDFS. 

 
Fig 11: Processed Data Chunks on HDFS 

 
F.The Fig 12 shows the word count output present in the 
HDFS. 

 
Fig 12: Word Count output on HDFS 

 

VI. CONCLUSION 
Hadoop distributed file systems provides a high throughput 
access to data of an application and is suitable for 
applications that need to work with large data sets. It is 
designed to hold terabytes or petabytes of data and provides 
higher throughput access to this data. Files containing data 
are stored redundantly across number of machines for 
higher availability and durability to failure.Moving 
computation is faster than the moving data. we used 
MapReduce programming model to process data stored on 
HDFS.using HDFS we can process and count the number of 
words in a large data file. 
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