
The Hadoop distributed file system
Pooja S.Honnutagi

Computer Science & Engineering
VTU Regional Centre Gulbaga,Karnataka,India

Abstract: The flood of data generated from many sources
daily. Maintenance of such a data is challenging task. The
solution is Hadoop. Hadoop is a framework written in Java for
running applications on large clusters of commodity
hardware. The Hadoop Distributed File System (HDFS) is
designed to be scalable,fault-toleran,distributed storage
system that works closely with MapReduce.In a large cluster,
thousands of servers both host directly attached storage and
execute user application tasks. By distributing storage and
computation across many servers, the resource can grow with
demand while remaining economical at every size. Using
Hadoop’s HDFS and MapReduce programming model we can
distribute,process and count the number of occurrence of each
word in large file set.

Keywords: Hadoop,HDFS,MapReduse,Namenode, Datanode

I. INTRODUCTION
Hadoop is a framework written in Java for running

applications on large clusters of commodity hardware and
incorporates features similar to those of the Google File
System (GFS) and of the MapReduce computing paradigm.
Hadoop’s HDFS is a highly fault-tolerant distributed file
system and, like Hadoop in general, designed to be
deployed on low-cost hardware. It provides high throughput
access to application data and is suitable for applications
that have large data sets. Even if hundreds or thousands of
CPU cores are placed on a single machine, it would not be
possible to deliver input data to these cores fast enough for
processing. Individual hard drives can only sustain read
speeds between 60-100 MB/second. These speeds have
been increasing over time, but not at the same breakneck
pace as processors. Optimistically assuming the upper limit
of 100 MB/second, and assuming four independent I/O
channels are available to the machine, that provides 400
MB of data every second. A 4 terabyte data set would thus
take over 10,000 seconds to read--about three hours just to
load the data! With 100 separate machines each with two
I/O channels on the job, this drops to three minutes.

Hadoop processes large amount of data by
connecting many commodity computers together and
making them work in parallel. A theoretical 100-CPU
machine would cost a very large amount of money. It
would in fact be costlier than 100 single-CPU machines.
Hadoop basically ties together smaller and more reasonably
priced computers to form a single cost-effective compute
cluster. Computation on a large amount of data has been
done before in a distributed setting. The simplified
programming model is the reason that makes Hadoop
unique. In a Hadoop cluster when the data is loaded it is

distributed to all the machines of the cluster as shown in Fig
1.

Fig 1 :Data is distributed across nodes at load time

Hadoop DistributedFile System (HDFS) splits the
large data files into parts which are managed by different
machines in the cluster. Each part is replicated across many
machines in a cluster, so that if there is a single machine
failure it does not result in data being unavailable. In the
Hadoop programming framework data is record oriented.
Specific to the application logic, individual input data files
are broken into various formats. Subsets of these records
are then processed by each process running on a machine in
the cluster. Using the knowledge from the DFS these
processes are scheduled by the Hadoop framework based on
the location of the record or data. The files are spread
across the DFS as chunks and are computed by the process
running on the node. Hadoop framework helps in
preventing unwanted network transfers and strain on
network can be obtained by reading data from the local disk
directly into the CPU. Thus with hadoop one could have
high performance results due to data locality, with their
strategy of moving the computation to the data.

II. ARCHITECTURE

A HDFS is filesystem component of Hadoop.HDFS has
master/slave architechture.An HDFS cluster consists of
single namenode, a master server and many datanodes
,called slaves in the architecture.The HDFS stores
filesystem metadata and application data separetly.HDFS
stores metadata on separate dedicated server called
Namenode and Application data are stored on separate
servers called Datanodes. All servers fully connected and
communicated with the TCP based protocols.The below fig
2 shows the complete architechture of the HDFS[1].

Large amount of input data

Node1

Slice of
input

Node2 Node3

Slice of
input

Slice of
input

Pooja S.Honnutagi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6238-6243

www.ijcsit.com 6238

metadata ops

 block ops

DataNode DataNode
Read

 Replication

 Rack1 Write Rack2

Fig 2:Architecture of HDFS

A. Namenode
Namenode holds all the filesystem metadata for

the cluster and oversees the health of datanode and
coordinates access to data.Namenode is the central
controller of the HDFS.It does not hold any cluster data
itself.The namenode only knows what blocks make up a file
and where those blocks are located in the file.The
namenode points clients to the datanodes they needs to talk
to and keeps track of the cluster’s storage capacity,health of
each datanode ,and making sure each block of data is
meeting the minimum defiend replica policy.

The namenode maintains file system namespace
.Any change to the filesystem namespace or its properties
recorded by the namenode.An application can specify the
number of replicas of a file that should be maintained by
HDFS.Number of copies of the file is called replication
factor o that file.This information is stored by the
namenode.

The namenode is critical component of the
HDFS.without it,clients would not be able to read or write
files from HDFS,and it would be impossible to schedule
and execute MapReduce jobs.Beacuse of this,its good idea
to

equip the namenode with a highly redundant enterprise
class server configuration;dual server supplies,hot
swappable fans,redundant NIC connections etc..

B. Datanode
HDFS stores application data in datanode.During

startup each datanode connects to the namenode and
performs handshake.The purpose of handshake is to verify
the namespace id and software version of the datanodes.If
either doesnot match that of the namenode and datanode
automatically shuts down.

HDFS uses heartbeat messages to detect
connectivity between namenode and datanodes.Datanode
send heartbeat to the namenode for every three seconds via
TCP handshake,using same port number defiend for the
namenode daemon,usually TCP 9000.Every tenth heartbeat
is the Block report,where the datanode tells the namenode
about all the data blocks it has.the block reports allow the
Namenode to build its metadata and ensure (3)copies of the
blocks exist in different nodes in different racks.

C. Secondary Namenode

 Hadoop has server role called the Secondary Name
Node. A common misconception is that this role provides a
high availability backup for the Name Node. This is not the

Namenode

Metadata(Name ,replicas,….):

/home/foo/data, 3,….

client

client

Secondary name
node

Pooja S.Honnutagi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6238-6243

www.ijcsit.com 6239

case.The Secondary Name Node occasionally connects to
the Name Node (by default, ever hour) and grabs a copy of
the Name Node's in-memory metadata and files used to
store metadata (both of which may be out of sync). The
Secondary Name Node combines this information in a fresh
set of files and delivers them back to the Name Node, while
keeping a copy for itself.

Should the Name Node die, the files retained by
the Secondary Name Node can be used to recover the Name
Node. In a busy cluster, the administrator may configure the
Secondary Name Node to provide this housekeeping
service much more frequently than the default setting of
one hour. Maybe every minute

.
D. HDFS client

User application access the flie system using
HDFS client.Like other file systems,HDFS supports
operations to read,write and delete files.When an
application reads a file,HDFS client first asks the namenode
about list of datanodes that host replicas of the blocks of
the file.It then contacts datanodes directly and requests the
transfer of the desired block.when client writes,it first asks
the namenode to choose datanode to host replicas of the
first block of the file.The client organizes the pipeline from
node-to-node and sends data.

E. Data replication

HDFS replicates file blocks for fault tolerance. An
application can specify the number of replicas of a file at
the time it is created, and this number can be changed any
time after that. The name node makes all decisions
concerning block replication. HDFS uses an intelligent
replica placement model for reliability and performance.
Optimizing replica placement makes HDFS unique from
most other distributed file systems, and is facilitated by a
rack-aware replica placement policy that uses network
bandwidth efficiently.

Large HDFS environments typically operate
across multiple installations of computers. Communication
between two datanodes in different installations is typically
slower than data nodes within the same installation.
Therefore, the name node attempts to optimize
communications between data nodes. The name node
identifies the location of data nodes by their rack IDs.

F. Rack awareness
HDFS provides rack awareness.Typically,large clusters are
arrange across multiple installations(racks).Network traffic
between different nodes within the same installation is more
efficient than network traffic across installations.A
namenode tries to place replicas of a block on multiple
installations for improved fault tolerance.However,HDFS
allows administrators to decide on which installation a node
belongs.Therefore ,each node knows its rack ID,making it
rack aware.

III. FILE READ AND WRITE OPERATION ON HDFS

A. Write operation:

Figure 3:writing data to HDFS

Here we are considering the case that we are going to create
a new file, write data to it and will close the file.Now in
writing a data to HDFS there are seven steps involved.
These seven steps are[2]:

Step 1: The client creates the file by create() method on
DistributedFileSystem.

Step 2: DistributedFileSystem makes an RPC call to the
namenode to create a new file in the filesystem’s
namespace, with no blocks associated with it.The
namenode performs various checks to make sure the file
doesn't already exist and that the client has the right
permissions to create the file. If these checks pass, the
namenode makes a record of the new file; otherwise, file
creation fails and the client is thrown an IOException. The
Distributed FileSystem returns
an FSDataOutputStream for the client to start writing data
to. Just as in the read case, FSDataOutputStream wraps a
DFSOutput Stream, which handles communication with
the datanodes and namenode.

Step 3: As the client writes data, DFSOutput
Stream splits it into packets, which it writes to an internal
queue, called the data queue. The data queue is consumed
by the DataStreamer, which is responsible for asking
 the namenode to allocate new blocks by picking a list
of suitable datanodes to store the replicas. The list of
datanodes forms a pipeline, and here we’ll assume the
replication level is three, so there are three nodes in the
pipeline. TheDataStreamer streams the packets to the first
datanode in the pipeline, which stores the packet and
forwards it to the second datanode in the pipeline.

Step 4: Similarly, the second datanode stores the packet
and forwards it to the third (and last) datanode in the
pipeline.

Pooja S.Honnutagi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6238-6243

www.ijcsit.com 6240

Step 5: DFSOutputStream also maintains an internal
queue of packets that are waiting to be acknowledged by
datanodes, called the ack queue. A packet is removed from
the ack queue only when it has been acknowledged by all
the datanodes in the pipeline.

Step 6: When the client has finished writing data, it
calls close() on the stream. Step 7: This action flushes all
the remaining packets to the datanode pipeline and waits for
acknowledgments before contacting the namenode to signal
that the file is complete The namenode already knows
 which blocks the file is made up of (via
 DataStreamer asking for block allocations), so it only has
to wait for blocks to be minimally replicated before
returning successfully.

B. Read Operation:

Fig 4:reading the file from HDFS

Fig 4 shows six steps involved in reading the file from
HDFS[2]:Let's suppose a Client (a HDFS Client) wants to
read a file from HDFS. So the steps involved in reading the
file is:

Step 1: First the Client will open the file by giving a call to
open() method onFileSystem object, which for HDFS is an
instance of DistributedFileSystemclass.

Step 2: DistributedFileSystem calls the Namenode, using
RPC, to determine thelocations of the blocks for the first
few blocks of the file. For each block, thenamenode
returns the addresses of all the datanodes that have a copy
of that block.

The DistributedFileSystem returns an object
of FSDataInputStream(an input stream that supports file
seeks) to the client for it to read data
from.FSDataInputStream in turn wraps
a DFSInputStream, which manages the datanode and
namenode I/O.

Step 3: The client then calls read() on the
stream. DFSInputStream, which has stored the datanode

addresses for the first few blocks in the file, then connects
to the first closest datanode for the first block in the file.

Step 4: Data is streamed from the datanode back to the
client, which calls read()repeatedly on the stream.

Step 5: When the end of the block is
reached, DFSInputStream will close the connection to the
datanode, then find the best datanode for the next block.
This happens transparently to the client, which from its
point of view is just reading a continuous stream.

Step 6: Blocks are read in order, with
the DFSInputStream opening new connections to
datanodes as the client reads through the stream. It will also
call the namenode to retrieve the datanode locations for the
next batch of blocks as needed. When the client has
finished reading, it calls close() on the FSDataInputStream.

IV. PROCESSING OF DATA DISTRIBUTED ON HDFS

We process data on HDFS parallely using MapReduce
programming model.This model is an associated
implementation for processing and generating large data
sets.user specify a map fuction that process a key/value pair
to generate a set of intermediate key/value pair,and a reduce
function that merges all intermediate values associated with
the same intermediate key.The below figure shows a data
flow using MapRedce.

Fig 5: Data Flow in MapReduce

Below steps explains data flow in above fig 5:
Step 1: The system takes input from file system and

spilts it up across separate map nodes.
Step 2: The map function or code is run and generates

an output for each map node.
Step 3: This output represents a set of intermediate

key/value pairs that are moved to reduces
nodes as input.

Step 4: The reduce function or code is run and
generates an output for each reduce node.

Step 5: The system takes a outputs from each node to
aggregate a final view.

Pooja S.Honnutagi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6238-6243

www.ijcsit.com 6241

A. WordCount example:

Fig 6:wordcount example

Each Input box on the left-hand side of fig 6 is a

separate document. Here are four documents, the third of
which is empty and the others contain just a few words, to
keep things simple.

By default, a separate Mapper process is invoked
to process each document. In real scenarios, large
documents might be split and each split would be sent to a
separate Mapper. Also, there are techniques for combining
many small documents into a single split for a Mapper. The
fundamental data structure for input and output in
MapReduce is the key-value pair. After each Mapper is
started, it is called repeatedly for each line of text from the
document. For each call, the key passed to the mapper is the
character offset into the document at the start of the line.
The corresponding value is the text of the line.

In Word Count, the character offset (key) is
discarded. The value, the line of text, is tokenized into
words, using one of several possible techniques. Finally, for
each word in the line, the mapper outputs a key-value pair,
with the word as the key and the number 1 as the value (i.e.,
the count of “one occurrence”). Note that the output types
of the keys and values are different from the input types.
Part of Hadoop’s magic is the Sort and Shuffle phase that
comes next. Hadoop sorts the keyvalue pairs by key and it
“shuffles” all pairs with the same key to the same Reducer.
There are several possible techniques that can be used to
decide which reducer gets which range of keys.

The inputs to each Reducer are again key-value
pairs, but this time, each key will be one of the words found
by the mappers and the value will be a collection of all the
counts emitted by all the mappers for that word. Note that
the type of the key and the type of the value collection
elements are the same as the types used in the Mapper’s
output. That is, the key type is a character string and the
value collection element type is an integer. To finish the al l
key-value pair consisting of each word and the count for
that word.gorithm, all the reducer has to do is add up all the
counts in the value collection and write a fina

Algorithm
1: class Mapper
2: method Map(docid a; doc d)
3: for all term t ε doc d do
4: Emit(term t; count 1)

1: class Reducer
2: method Reduce(term t; counts [c1; c2; : : :])
3: sum=0
4: for all count c ε counts [c1; c2; : : :] do
5: sum=sum + c
6: Emit(term t; count sum)

C.Table 1 shows the Map Reduce program running.

10/04/13 17:43:02 INFO mapred.JobClient: map 0%
reduce 0%
10/04/13 17:43:14 INFO mapred.JobClient: map 66%
reduce 0%
10/04/13 17:43:17 INFO mapred.JobClient: map 100%
reduce 0%
10/04/13 17:43:26 INFO mapred.JobClient: map 100%
reduce 100%

Table 1:Map Reduce program running

V. RESULTS
A.The Fig 7 shows the Hadoop Administration interface
,this gives the entire cluster information.

Figure 7: Hadoop Administration Interface

B.The Fig 8 shows the Name Node interface,this gives the
total capacity, remaining and used capacity of the Name
Node.

Fig 8: Name Node Interface.

C.The Fig 9 shows the HDFS interface, this gives the
information about current data on HDFS.

Pooja S.Honnutagi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6238-6243

www.ijcsit.com 6242

Fig 9: File System Interface

D.The Fig 10 shows the user accounts on Hadoop along
with their permissions

Fig 10: users on HDFS

E.The Fig 11 shows the Data Chunks distributed over the
HDFS.

Fig 11: Processed Data Chunks on HDFS

F.The Fig 12 shows the word count output present in the
HDFS.

Fig 12: Word Count output on HDFS

VI. CONCLUSION
Hadoop distributed file systems provides a high throughput
access to data of an application and is suitable for
applications that need to work with large data sets. It is
designed to hold terabytes or petabytes of data and provides
higher throughput access to this data. Files containing data
are stored redundantly across number of machines for
higher availability and durability to failure.Moving
computation is faster than the moving data. we used
MapReduce programming model to process data stored on
HDFS.using HDFS we can process and count the number of
words in a large data file.

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org/
[2] www.bigdataplanet.info
[3] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert

Chansler,“Hadoop Distributed File System”, 2010
[4] Haojun Liao, Jizhong Han, Jinyun Fang “Multi-Dimensional Index

on Hadoop Distributed File System”, Fifth IEEE International
Conference on Networking, Architecture, and Storage ,2010

[5] Kyriacos Talattinis, Aikaterini Sidiropoulou, Konstantinos Chalkias,
and George Stephanides, “Parallel Collection of Live Data Using
Hadoop”, in 14th Panhellenic Conference on Informatics, 2010

[6] Shafer, J, “The Hadoop Distributed File System: Balancing
Portability and Performance”, 2010

[7] Zhi-Dan Zhao, “ User-Based collaborative Filtering
Recommendation Algorithms on Hadoop”, 2010

[8] Rini T. Kaushik, Milind Bhandarkar, “Evolution and Analysis of
GreenHDFS”,2010.

[9] Garhan Attebury, Andrew Baranovski, “Hadoop Destributd File
System for Grid”,2009

[10] K. V. Shvachko, “HDFS Scalability: The limits to growth,”
;login:.April 2010,pp. 6–16.

[11] Jeffrey Dean and Sanjay Ghemawat “MapReduce: Simplified Data
Processing on Large Clusters“GoogleInc.,

Pooja S.Honnutagi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6238-6243

www.ijcsit.com 6243

